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Abstract

* A three-level system of intermediate transition frequencies

12 and W2 3 , with nonvanishing dipole matrix elements for these

transitions only, is considered to be coherently pumped at a

frequency near 1/2(w 1 2  W w2 3 ) and radiating at both intermediate

frequencies. A sharply resonant rise in the second- and

third-level population is found for slight detuning of the pump

from 1/2(w 12 * w 2 3 ). Population inversion in either transition

is shown to be possible, depending on the pertinent parameters.

The induced dipole moment as well as the coherence of the

radiation is discussed.

p"

Key Words: Laser, Laser-type Devices, Coherent Pumping,

Two-Photon Pumping, Three-Level 5ystems, Quantum Electronics
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I. INTRODUCTION

Production of population inversion by means of a

"three-level" scheme is one of the standard methods used in

lasers and masers pumped by an electromagnetic field. In this

scheme, the (1.3) transition and either the (1,2) or the (2,3)

transition couple to the electromagnetic field, while the other

intermediate transition is nonradiative and must be subjected to

a perturbation that produces relaxation. The pump acts on the

(1,3) transition, and a steady-state population at the

intermediate radiative frequency results for an appropriate range

of the pertinent parameters, as follows from conventional rate

equations. In order that this scheme be applicable, the states

corresponding to the first and third level must be of opposite

parity, and the pump frequency must be higher than the laser

frequency. In the present report an entirely different method of

steady-state population inversion in a three-level system will be

described, applicable when the top and bottom states are of the

saml parity, both intermediate transitions are radiative, and the

pump frequency may be either higher or lower then the frequency

for which inversion is produced.

II. FORMULATION OF PROBLEM AND DERIVATION OF EQUATIONS OF MOTION

We consider an atomic system ("atom") of three energy

levels, Al1, 'hw2, Mw3 in ascending order, with relatively close

intermediate transition frequencies u2, L)23, (wiJ Iwi-wtI)

and only two nonvanishing dipole matrix elements U12 and V230

corresponding to the two intermediate transitions, respectively.

A pump field E u 2EO coaut, with w-(1/2)w131<<w, acts on the

3
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* atom, which, in turn, is either coupled to two loasy cavity modes

- with resonant frequencies w1 2 and w 2 3 , respectively, or to the

free-space field, described by an infinite, denumerable set of

" modes. We will refer to the two-mode coupling as Case I. and to

the free-space coupling as Case 11. distinguishing between these

cases, where necessary, by the subscripts I and II, respectively.

In the absence of these subscript*, the expression is applicable

.- to either case. For simplicity, we consider the situation in

*which the field radiated by one transition has a negligible

interaction with the dipole moment of the other transition; in

Case I. we assume that the wi3 mode couples only to the (i,3)

transition and in Case 11. we assume that different sub-sets of

modes couple to the dipole moment of each transition.

gIn boson second-quantization notation E1, the atomic

Hamiltonian is given by Ha -Lwiai ai, and the dipole moment by

4 4 + 4 + +
*:d a U12aa2 * P23a2a3 * h.c.. where ai and ai are the usual

3 annihilation and creation operators obeying the commutation rules
~+

"" [G., aj3 a 61 3 , all other commutators vanishing. Introducing the

reduced variables A3, such that aj = Aj o-iwj t , and using the

rotating wave approximation, we express the pump-atom coupling by

H 8 A A + e I(W 12-w)t + AA+e I(W23 - W ) t I+h.
PaM [c 1 2 A1 Ae + 2 3 A2 3 + 2 c.,

where Oi a -(EoUj3)/,. The field of any mode can be described

by the photon annihilation and creation operators b and b+0 with

[b(t), b (t)] = 1. In Case I. we use the notation b3k, with the

corresponding reduced variables given by blk * B3k e-iwjkt. In

Case II, we use the notation bk, with

4

n " 
+

+ I " t m" " " * * "- *: *- . . .. .- . . * . * '.. * . . .



-~~~~ ~ ~ ~ -. - - . ..- _ I- I _1- -___ - %,.

bk a Bke-lVkt, where vk is the frequency of the k'th (roe-space)

mode. Using, again, the rotating wave approximation E23, we

express the coupling between the atom and the field by

Hat *4d 16012 * A2AIO?233 1.

where

3i " B1 3(t)

Yj3 being the constant that describes the coupling between the

(i.3) transition and the (i.j) cavity mode, and

61Jll 
) - I YijkBK(t) e-k ij

YiXk being the constant that describes the coupling between the

(i.3) transition and the k'th free-space mode. Introducing the

notation 6-- (1/2)w1 3 -w a-(1/2)(w12 - 2 3 ), one obtains, as atomic

equations of motion

A e-t( 6 + 6 ) t +63+A

Si(a 2 A 1 ei(6+6)t + a2 3 A3 e-(6-) + A19 1 2  + 3 A3 )

i(0 2 3A 2ei(a5")t +A2323)

33 223

Expression for the field in terms of atomic variables are

obtained from previously derived results. These are [3)

Sijl ( t )  yiJ Bj (O)-il Iij 1 2 $f t d t + (t) tI)-EiJ (t-ti) V~

5
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where is the loss constant of the (i,j) mode (energy will

decay freely as exp (-2Ei3t)), and E43

ij I I (t) - (0) (t) - ik A (t)A (t) i<jij II i

where ki3 is a positive constant proportional to the average

value (averaged over the index k) of IYi3k 12 in the neighborhood

of vk 0 wiJ, and&B?~ is the unperturbed~~.ta s h

operator obtained by replacing Bk(t) by Bk(O) in the expression

for~i3 zI(t). (It is assumed that the pump is turned on at t a 0.)

We will consider, presently, only the situation in which the

lose in the cavity-modes is sufficiently large so that the field

follows the atomic polarization adiabatically; in other words.

Eij is larger than the rate of change of '<AiA3. In this

situation one can write, 
for t>) .i3-1

3 t) M(0) -ik A+ (t)A (t6iii iji ijli

where 12/C 80
kiJZ iijI (oB (0).

Since IS3(0) I> *0 for both Case I and Case II, the expression

for 4 3
1 (t) has the same form in both cases. It is therefore

unnecessary to treat them separately, and the subscripts I and II

will be dropped with the understanding that the discussion,

henceforth refers to both cases.

Our present interest lies in the steady-state atomic level

populations and dipole moments. We need, therefore, equations

for the expectation values of all bilinear products AjA3 with

respect to an (initially) unexcited radiation field. (It should

be noted that the quantities <A3Ai> are the elements Pi) of the

atomic density matrix in the interaction representation.) The

6



derivation of such equations from those for the Ai's in a

convenient form is outlined briefly in the following.

We first write expressions for all derivatives (d/dt)<A*AjP

and order each term so that 0- appears on the extreme left and

19 appears on the extreme right. For the case of an initially

unexcited radiation field, theRi term refers to the vacuum

field, and the kij term accounts for the radiation reaction.

5ubstituting for each 0i3(t) these two terms, and utilizing the

relationship <11 (t) =Sj~ (t) 0, = 0, we drop all

explicit vacuum-field references. The above ordering of the

ia's also determines the ordering of the four atomic factors in

the kij terms, which we now rewrite in normal order, using the

appropriate commutation relationships. Utilizing another

previously derived result Ell, namely,

AiAj1> a 0 when the state I) describes a single atom, we drop

all four-factor terms (remaining after the normal ordering).

Finally, the substitutions

-i6t i~t i6t
A1 1 1 e , A2  M x 2e A 3  ,

+ + + i<x x x >
Pi -xix +x xl > '

are used to obtain ecuations of motion with constant coefficients

for nine real variables:

7
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n 012S12 + 2k12n2

2 . - a12 S 12 + a23S23 - 2k1 2n2 + 2k23n3

n3 = - a23S23 - 2k 23 n3

912 = - (6+A)P 12 - 2a12(nl-n2) - a23P13-k12S12

S23 = - (6-A)P23 - 2a23 (n2 -n3) + a12 P13 - (k1 2+k23)s23

13 = - 26P13 - 23P12 + a12P23 - k23$13

12 ' (6+6)S12 + a23S13 - k12P12 ,

-23 (6-A)S23- 012S13- (k12 + k23)P23

P13 n 26S13 + a23S12 - a12S23 - k 2 3P1 3

These equations exhibit 2ki3 and 2ai3 as the decay rate and Rabi

frequency. respectively, associated with the (i,3) transition.

When multiplied by the appropriate matrix elements, P12 and P23

describe the components of the dipole-moment expectation values

in phase with the field. while 512 and 523 describe those in

quadrature with the field (which are responsible for the power

abuorption). It should be noted that these expectation values

represent only the coherent part of the dipole moment. The

incoherent part must be obtained from other than the lowest

noments. The coherence of the radiation will be discussed later.

III. SOLUTION OF EQUATIONS OF MOTION

As mentioned previously, our present interest lies in a

steady-state solution. Setting the time derivatives equal to

zero, and replacing one of the first three equations. (say, that

for n2 ) by Eni * 1. we obtain a set of nine inhomogeneous

8
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equations for nine unknowns. An exact analytic solution is

formally possible but complicated, and we resort at first to a

numerical solution. For this purpose all the constants, which

are inverses of the time, can be normalized by taking a 1 2 to be

unity; all frequencies and decay constants are then given in

terms of the (1,2) Rabi frequency. Figure 1 shows a

three-dimensional graph of n2/nl vs. 6 and A. The resonance

that appears in n2/n1 for large A is striking, and motivates an

approximation that makes analytic solutions of the steady-state

equations much simpler. We consider the case A>>ai>),ki3. If

the time scale is chosen so that ei3 -1. one can regard A-1 and

ki3 as small quantities (of first order) compared to unity, and

examine the solution for small 6. The four equations containing A

can now be approximated by retaining only the lowest order terms,

that is, by dropping the terms (in these equations only)

containing 6 and k. The resulting set of steady state equations

yields a solution which can be written most succintly as follows:

Let

rk /k 6 2 2
12 23 0 (c23 -12

and

2 2 2
R 2 2 [k 2 3 + 4(6-%0) ]

012 a23

9
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With this notation, we have

n [1+r(2+R)]-1
2

- n, r(l+R)n 2

n 3 =rn 2

: 12 2(k 12 /a 12j)n 2
:' 23 2(k 12/A 23)n 2

23 -

P(i2 )  k22 2(-0n 2(-0

A2(66 0
P = 4r n
13 a12a23

Figure 2 displays both the numerical solution of the exact

equations and the analytic solution of the approximate equations

for the level-populations as functions of 6. It is seen that,

for the parameters used, the approximation is good.

IV. DISCUSSION OF SOLUTIONS

Since the quantity R reaches a minimum at 6 60, the

analytic solutions for n2 and n3, as well as those for

15121 , 15231 and 15131. all exhibit resonant-type maxima as a

function of pump frequency at (1/2) w13-60, that is, when the

pump is detuned from exact two-photon resonance by 6O. The

half-maximum resonance width about do for either n2 or n3 is

given by

[2 3 + 23 21
2 (6-60) n [ + (2 - ) + k2 3

limax 1

10
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and that for n2/nl is given by

a12 23 2 %2(- + k 2

Both widths are an order of mag nitude smaller than the Rabi_

frequencies 2ai3. Population inversion is achieved either in the

(2,3) transition for r), or in the (1,2) transition for

2 2 2 2
r<l1 4 (a k23/Q12 Q23)1-1. While the (2.3) inversion ratio is

frequency independent in the solution of the approximate

equations, the (1,2) inversion ratio is sharply resonant, and is

given at resonance by

(n/nl) - r 2 -2 -2) -1
2 23 1223)

The transition at which inversion occurs will have either a

higher or a lower frequency then the pump frequency, the

difference being approximately A. It is also interesting to

note that P13 goes through zero at resonance.

It is clear that the present effect may have interesting

applications, firstly, because population inversion for a given

pair of levels may not be otherwise achievable, secondly, because

inversion can be achieved at a higher frequency than the pump

frequency, and thirdly, because a sharp resonance has many

obvious uses in physics. Discussion of the details of such

applications is beyond the scope of the present paper.
%.
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N V. RATE-PROCESSES ANALYSIS

It is desirable to offer a more intuitive type of

explanation of the present resonance effect than that

-: contained in the mathematics. The first part of such an

- explanation is the observation that (1/2)w1 3 -60 is just the pump

* * frequency at which a three-level system such as the present, but
-.. m

without radiation losses (that is, without coupling to the

radiation field), behaves like a two-level system fora )>)i[5].

Its population, if intially in the ground state, mainly

oscillates between the first and the third level (a Rabi-type

-oscillation) with frequency 2G12L23/6, while the second-level

population remains small (-a 2 /A2) and oscillates with relatively
12

high frequency (-,)6 E] . We can regard our present radiative system as

responding to the pump like this lossless system, pumped from

level 1 to level 3 by a two-photon process. The second part of

the explanation is the observation that the present system

behaves like a three-level syste1m with respect to radiation

losses, relaxing at both intermediate frequencies with a

consequent distribution of population to all levels.

Since the above explanation invokes, implicity. rate

processes, it is of interest to see how it can be presented in

quantitative form using rate equations. (It should be noted that

the explanation is applicable only to the range of parameter

values for which the approximation was made.) A net of rate

equations for three levels reads,

12
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hl R12(n2-nl) * R13(n3-nl) + 2kl12n2,

n"2 "R2(flZ-n2) * R23(n3-n2) * 2k23n3-2k12n2,

n3 = R23(n2 -n 3 ) * R13(nl-n3) - 2k23n3,

where Ri3 is the pumping rate between levels i and 3. In order

to obtain the pumping rate between consecutive levels, we look at

the equations of motion for a two-level system. These can be

obtained immediately from the three-level equations of motion by

eliminating all references to either the first or the third

* level. Dropping all references to the third level, we obtain

nl - =12 5 12 * 2k12n2, A2 * " n1,

912 * - 6 ' ) P12- 2
1 2 (n1 -n2) - k12S1 2,

C P12 - (6 A )512 - k12P12,

where the deviation of the pump frequency from resonance is now

given by 6 *. 5ince the rate equations for two levels reduce to

Al a R12(n2-nl) * 2kl2n2, h2 -1,

we must have

R12(n2-nl) a -12512-

Implicit in the use of rate equations is the assumption that

rates are independent of the state of the system. We consider

the steady state, set t12 = P12 0 0, eliminate P12 from the last

two equations of motion, and obtain
2

2a2 k

a 12 12 ' 2 1 12 2 (n2-n1)k 12 + (6+6)

which yields
2

R12 2 2k12 + (6+6)

a generally familiar result.

13



We return, now, to the three-level rate equation and compare

them with the three-level equations of motion, obtaining thus

a12512 U R12(n2-nl) ' R13(n3-nl).

For the range of parameters that led to the approximate equations

of motion, R12 is a small quantity of the order of k12/A2 , that

is, of third order. (It should be recalled that kij and &- 1

are small quantities of first order, and 013 is of order unity.)

From the steady state equations, we see that a12S12 must

be of order k12, since it equals -2k12n 2 , and ni is, of course.

of order unity. R12 is therefore negligible compared to R13, and

R13 must be of the same order as 512. A similar argument applies

* to R23 relative to R13. One can say that the approximations made

in the equationsof motion find their counterpart, in the rate

equations, in the neglect of R12 and R23 compared to R13.

Writing the three-level rate equations in accordance with this

prescription we have

ll R13(n3-nl) * 2kl2n2,

;2 z 2k23n3 - 2k12n2,

;3 = R13(nl-n3) - 2k23n3.

This is just the quantitative form of the qualitative explanation

offered earlier. If we now set

2 a 2 a k
SR -12 23 23R13 2 + 4(_0)2

A k 2 3 + 4 ( - 0

these rate equations will yield exactly the 6ame expression for

the steady-state populations as the analytic solution of the full

(approximate) equations of motion. It should be noted that,

14



while rates for rate-equation purposes are usually taken to be

the transition probabilities derived by perturbation theory, the

above expression for R13, with the detuning, can come only from

consideration of the full set of coherent equations. Lastly, as

a check, we compare the rate of energy absorption from the pump

with the rate of energy loss to the field. The former is given

by

ACw12 * w23)R13(nj-n3)

while the latter is given by

2A wl12k12n2 * 2A W23k23n3

Substitution of the above expression for R13 and the analytic

solutions for ni in these two rates exhibits their equality.

VI. COHERENCE

0 It is of interest to examine the coherence properties of the

radiation emitted by the pumped atom. For simplicity, we use the

notation applicable to Case 1, in which the atom radiates into

two loay cavity modes. The (complex) field operator for the

(ia) mode in proportional to Bij exp(-Lwijt). By factoring out

713 from the expression for ijI(t) in 5c. II. we obtain

(t) (0) J A+(tA(t)

where, it is recalled, Bi3(O))> a 0. The coherent field is

proportional to <Bi3(t))exp(-iwijt). The expectation value of

the total energy in the (i,3) mode isAiij3 <Bi3Bi3 > , while the

+
energy associated with the coherent field is Aw i(Bi3. (Bji).

From the above operator expression for Bi3, we have

15



B~ 11 + kLLil

i: iji'::...<B3+ j = i2 <AiAjAiAj> = fl n , i •J ,

(since AiA3 90> 0 for a single atom), and

+ 2 2
<Bij><Bij>= i(kij/Aij )(Pii Sij

* where (i.3) stands for either (1,2) or (3,4). The ratio of the

coherent field energy to the total energy is, therefore, given by

+B 2B 2<B ><B > 14 P+

Si)
+ n

<B B >J<ij Ij>

The order of magnitude of this quantity is the same as that of

(kij/aij * (cij/A) 2 . which is a small quantity of second order

for the parameter range under consideration. We see, therefore,

that most of the radiation is incoherent. The frequency of the

coherent radiation is that of the pump, as is to be expected; the

incoherent radiation, on the other hand, may be expected to lie.

largely, in the frequency regions near the two transition

frequencies. A quantitative discussion of the spectral

distribution of the radiation is beyond the scope of the present

paper.

VII. CONCLUSION AND 5UJMARY

5ingle-frequency two-photon pumping of a three-level system

that radiates naturally only at the two intermediate frequencies

has been considered. It has been shown that when the pump is

slightly detuned from two-photon resonance and not too close to

16



* one-photon resonance for one of the intermediate frequencies,

population inversion can be obtained either in the upper or in

the lower pair of levels, depending mainly on the ratio of the

* two radiative decay constants. This effect furnishes a novel

method of population inversion for laser purposes and a offers

the possibility of obtaining population inversion in a transition

with a frequency higher than the pump frequency.
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Fig. 1 The steady state population ratio n2/n I in a three-level

system as a function of 6F.w13-w and A:h(w1 2-w2 3) for

012 a 23 = 2, k12 = 0.01 and k23 - 0.04. (We

choose (k 2 3 /k 1 2 ) = (a23/a12) 2 since

a .-l;. .l and kij lij2.)
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Fig. 2 A comparison of the exact numerical solution (solid

lines) and approximate analytic expressions (dashed

lines) for the steady state populations as functions

of 6, with a =1 , 23 = 2, k1 2 =0.01, k2 3 =0.04 and

=10.
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